4.8 Article

Genetic, biochemical, and morphological evidence for the involvement of N-glycosylation in biosynthesis of the cell wall β1,6-glucan of Saccharomyces cerevisiae

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.2536561100

关键词

beta 1,6-glucan synthesis; KRE genes; protein kinase C

资金

  1. NIGMS NIH HHS [GM33185, R37 GM033185, R01 GM033185] Funding Source: Medline

向作者/读者索取更多资源

Recent evidence indicates that Stt3p plays a central role in the recognition and/or catalytic step in N-glycosylation (asparagine-linked glycosylation) in the lumen of the endoplasmic reticulum. It is known that stt3 mutants exhibit certain phenotypic features that are suggestive of a cell wall defect. To understand the basis of these phenotypes, we devised a genetic screen to isolate strains bearing mutations that lead to synthetic lethality in combination with the stt3-1 mutation. Using this screen, we were surprised to identify two KRE genes (KRE5 and KRE9) that are involved in the biosynthesis of the cell wall beta1,6-glucan. This finding led us to propose that the N-glycosylation process is essential in the biosynthesis of cell wall beta1,6-glucan. This proposal was supported by the observation that several stt3 mutants exhibited a 60-70% reduction in the content of cell wall beta1,6-glucan as compared with WT cells. Transmission electron microscopy revealed that the stt3 mutant strains exhibit a diffused cell wall with loss of the outer mannoprotein layer as compared with the WT cells. Thus, we provide genetic, morphological, and biochemical evidence for the critical involvement of N-glycosylation in some step in assembly of the cell wall beta1,6-glucan in Saccharomyces cerevisiae.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据