4.8 Article

Solventless synthesis of monodisperse Cu2S nanorods, nanodisks, and nanoplatelets

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 125, 期 51, 页码 16050-16057

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja037688a

关键词

-

向作者/读者索取更多资源

Cu2S nanocrystals with disklike morphologies were synthesized by the solventless thermolysis of a copper alkylthiolate molecular precursor. The nanodisks ranged from circular to hexagonal prisms from 3 to 150 nm in diameter and 3 to 12 nm in thickness depending on the growth conditions. High resolution transmission electron microscopy (HRTEM) revealed the high chalcocite (hexagonal) crystal structure oriented with the c-axis ([001] direction) orthogonal to the favored growth direction. This disk morphology is thermodynamically favored as it allows the extension of the higher energy {100} and {110} surfaces with respect to the {001} planes. The hexagonal prism morphology also appears to relate to increased C-S bond cleavage of adsorbed dodecanethiol along the more energetic {100} facets relative to {001} facets. Monodisperse Cu2S nanodisks self-assemble into ribbons of stacked platelets. This solventless approach provides a new technique to synthesize anisotropic metal chalcogenide nanostructures with shapes that depend on both the face-sensitive thermodynamic surface energy and the surface reactivity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据