4.5 Article

Fractal dimension of cellulose powders analyzed by multilayer BET adsorption of water and nitrogen

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 107, 期 51, 页码 14378-14382

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp034117w

关键词

-

向作者/读者索取更多资源

The aim of this study was to show that multilayer fractal Brunauer-Emmett-Teller (mfBET) theory can be used as a tool to obtain information about the distribution of water in cellulose powder particles of varying crystallinity. Microcrystalline cellulose, agglomerated micronized cellulose, low-crystallinity cellulose, and cellulose powders from green and brown algae were characterized by scanning electron microscopy and mfBET analysis on water and nitrogen adsorption isotherms. The distribution of water in the cellulose materials was found to be characterized by a fractal dimension smaller than 1.5 for all powders. The results showed that for highly crystalline cellulose materials, such as Cladophora cellulose, the cellulose-water interactions take place mainly on cellulose fibril surfaces adjacent to open pores without causing any significant swelling of the material. For less ordered celluloses the water interaction was found to take place inside the bulk material and the water uptake process caused the pore volume to swell between I and 2 orders in magnitude. For the Cladophora cellulose, the thickness of the adsorbed water layer at the outer cut off of the fractal region was found to coincide very well with the average pore size obtained from nitrogen adsorption measurements. The multilayer fractal BET analysis on nitrogen adsorption isotherms showed that the particles could be characterized by fractal dimensions between 2.13 and 2.50. We conclude that water adsorption has the ability to alter the structure of the studied material and reveal a sorption-induced, apparent fractal structure over a relatively narrow length scale interval, while nitrogen adsorption probes the substrate morphology over a wide range of length scales and reveals the true fractal structure.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据