4.5 Article

Model energy landscapes

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 107, 期 51, 页码 14434-14442

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp030885b

关键词

-

向作者/读者索取更多资源

The multidimensional potential-energy landscape formalism offers useful insights into the properties of supercooled liquids and glasses. However, its mathematical fundamentals present formidable subtlety and complexity. In the interests of developing a useful approximation for the statistical mechanics of landscapes, we have developed a simple family of models describing the energy-depth distribution of landscape basins. Our analysis begins with the Gaussian model that has been advocated in the recent literature, a physically appealing and thermodynamically rather accurate description that straightforwardly predicts a positive-temperature ideal glass transition. Careful enumeration of low-lying basins reveals however that the Gaussian model requires modification in the form of a logarithmic correction. Consequently, we have carried out algebraic and numerical analyses of a logarithmically modified Gaussian model, including depth dependence of the mean intrabasin vibrational free energy. The logarithmic modification has the effect of eliminating the positive-temperature ideal glass transition of the precursor pure-Gaussian model. Nevertheless, it is sufficiently similar to that unmodified model at and above any kinetic glass transition temperature to be able to represent measurable calorimetric data with reasonable accuracy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据