4.8 Article

Design and construction of glutamine binding proteins with a self-adhering capability to unmodified hydrophobic surfaces as reagentless fluorescence sensing devices

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 125, 期 52, 页码 16228-16234

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja036459l

关键词

-

向作者/读者索取更多资源

The chemically and genetically remodeling of proteins with ligand binding specificities can be utilized to synthesize various protein-based microsensors for detecting single biomolecules. Here, we describe the construction and characterization of fluorophore-labeled glutamine binding proteins (QBP) and derivatives coupled to the independently designed hydrophobic polypeptide (E12) that can adhere onto solid surfaces via hydrophobic interactions. The single cysteine mutant (N160C QBP) modified with the three environmentally sensitive fluorescent dyes (IAANS, acrylodan, and IANBD ester) showed increased changes in fluorescence intensity induced by glutamine binding. The use of these conjugates as reagentless fluorescence sensors enables us to determine the glutamine concentrations (0.1-50 muM) in homogeneous solution. The fusion of N160C QBP with E12, (Gly(4)-Ser)n spacers (GSn), and IANBD resulted in the novel fluorescence sensing elements having an adhering capability to hydrophobic surfaces of unmodified microplates. In ELISA and fluorescence experiments for the microplates treated with a series of the conjugates, IANBD-labeled N160C QBP-GS1-E12 displayed the best reproducibility in adhesion onto the hydrophobic surfaces and the precise correlation between fluorescence changes and glutamine concentrations. The performance of the biosensor-attached microplate for glutamine titrations demonstrated that the hydrophobic interaction of E12 with solid surfaces is useful for effective immobilization of proteins that need specific conformational movements in recognizing particular biomolecules. Therefore, the technique using E12 as a surface-linking domain for protein adhesion onto unmodified substrates could be applied effectively to prepare microplates/arrays for a wide variety of high-throughput assays on chemical and biological samples.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据