4.7 Article

Thermodynamically consistent variational principles with applications to electrically and magnetically active systems

期刊

ACTA MATERIALIA
卷 52, 期 1, 页码 11-21

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2003.08.020

关键词

variational principles; phase field modeling; thermodynamics; kinetics; Maxwell's equations

向作者/读者索取更多资源

We propose a theoretical framework to derive thermodynamically consistent equilibrium equations and kinetic driving forces to describe the time evolution for electrically and magnetically active materials. This procedure starts from the combined statement of the first and second laws of thermodynamics, naturally incorporates Maxwell's equations, and accommodates the description of continuous phase transformations for conserved and non-conserved order parameters. The kinetics of conserved and non-conserved ordered parameters are introduced, the adequate gradient flow is identified, thus the appropriate kinetics (e.g., Allen-Cahn, Cahn-Hilliard) are derived. Example applications of this theory include the electromechanical fields of piezoelectric materials and the wave equation in the limit of chemically homogeneous solids. Moreover, we derive a thermodynamically consistent set of partial differential equations which describe the transport of charged species in conductive, non-polarizable, magnetizable solids, and in polarizable, electrically insulating, non-magnetizable solids. (C) 2003 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据