4.8 Article

The Arabidopsis LUT1 locus encodes a member of the cytochrome P450 family that is required for carotenoid ε-ring hydroxylation activity

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.2237237100

关键词

-

向作者/读者索取更多资源

Lutein, a dihydroxy xanthophyll, is the most abundant carotenoid in plant photosynthetic tissues and plays crucial structural and functional roles in the light-harvesting complexes. Carotenoid beta-and epsilon-hydroxylases catalyze the formation of lutein from a-carotene (beta,epsilon-carotene). In contrast to the well studied beta-hydroxylases that have been cloned and characterized from many organisms, the epsilon-hydroxylase has only been genetically defined by the lut1 mutation in Arabidopsis. We have isolated the LUT1 gene by positional cloning and found that, in contrast to all known carotenoid hydroxylases, which are the nonheme diiron monooxygenases, LUT1 encodes a cytochrome P450-type monooxygenase, CYP97C1. introduction of a null mutant allele of LUT1, lut1-3, into the beta-hydroxylase 1/beta-hydroxylase 2 (b1 b2) double-mutant background, in which both Arabidopsis beta-hydroxylases are disrupted, yielded a genotype (lut1-3 b1 b2) in which all three known carotenoid hydroxylase activities are eliminated. Surprisingly, hydroxylated beta-rings were still produced in lut1-3 b1 b2, suggesting that a fourth unknown carotenoid beta-hydroxylase exists in vivo that is structurally unrelated to beta-hydroxylase 1 or 2. A second chloroplast-targeted member of the CYP97 family, CYP97A3, is 49% identical to LUT1 and hypothesized as a likely candidate for this additional beta-ring hydroxylation activity. Overall, LUT1 defines a class of carotenoid hydroxylases that has evolved independently from and uses a different mechanism than nonheme diiron beta-hydroxylases.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据