4.8 Article

Detection of bacteria in suspension by using a superconducting quantum interference device

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0307128101

关键词

-

向作者/读者索取更多资源

We demonstrate a technique for detecting magnetically labeled Listeria monocytogenes and for measuring the binding rate between antibody-linked magnetic particles and bacteria. This sensitive assay quantifies specific bacteria in a sample without the need to immobilize them or wash away unbound magnetic particles. In the measurement, we add 50-nm-diameter superparamagnetic magnetite particles, coated with antibodies, to an aqueous sample containing L. monocytogenes. We apply a pulsed magnetic field to align the magnetic dipole moments and use a high-transition temperature superconducting quantum interference device, an extremely sensitive detector of magnetic flux, to measure the magnetic relaxation signal when the field is turned off. Unbound particles randomize direction by Brownian rotation too quickly to be detected. In contrast, particles bound to L. monocytogenes are effectively immobilized and relax in about 1 s by rotation of the internal dipole moment. This Neel relaxation process is detected by the superconducting quantum interference device. The measurements indicate a detection limit of (5.6 +/- 1.1) x 10(6) L. monocytogenes in our sample volume of 20 mul. If the sample volume were reduced to 1 nl, we estimate that the detection limit could be improved to 230 +/- 40 L. monocytogenes cells. Time resolved measurements yield the binding rate between the particles and bacteria.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据