4.6 Article

Identification of a human cytoplasmic poly(A) nuclease complex stimulated by poly(A)-binding protein

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 279, 期 2, 页码 1383-1391

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M309125200

关键词

-

向作者/读者索取更多资源

The poly( A) tail shortening in mRNA, called deadenylation, is the first rate-limiting step in eukaryotic mRNA turnover, and the polyadenylate-binding protein ( PABP) appears to be involved in the regulation of this step. However, the precise role of PABP remains largely unknown in higher eukaryotes. Here we identified and characterized a human PABP-dependent poly( A) nuclease (hPAN) complex consisting of catalytic hPan2 and regulatory hPan3 subunits. hPan2 has intrinsically a 3' to 5' exoribonuclease activity and requires Mg2+ for the enzyme activity. On the other hand, hPan3 interacts with PABP to simulate hPan2 nuclease activity. Interestingly, the hPAN nuclease complex has a higher substrate specificity to poly( A) RNA upon its association with PABP. Consistent with the roles of hPan2 and hPan3 in mRNA decay, the two subunits exhibit cytoplasmic co-localization. Thus, the human PAN complex is a poly(A)-specific exoribonuclease that is stimulated by PABP in the cytoplasm.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据