4.7 Article

From linear to non-linear scales: analytical and numerical predictions for weak-lensing convergence

期刊

出版社

OXFORD UNIV PRESS
DOI: 10.1111/j.1365-2966.2004.07249.x

关键词

gravitational lensing; methods : analytical; methods : numerical; methods : statistical; cosmology : theory; large-scale structure of Universe

向作者/读者索取更多资源

Weak-lensing convergence can be used directly to map and probe the dark-mass distribution in the Universe. Building on earlier studies, we recall how the statistics of the convergence field are related to the statistics of the underlying mass distribution, in particular to the many-body density correlations. We describe two model-independent approximations which provide two simple methods to compute the probability distribution function (pdf) of the convergence. We apply one of these to the case where the density field can be described by a lognormal pdf. Next, we discuss two hierarchical models for the high-order correlations which allow us to perform exact calculations and evaluate the previous approximations in such specific cases. Finally, we apply these methods to a very simple model for the evolution of the density field from linear to highly non-linear scales. Comparisons with the results obtained from numerical simulations, obtained from a number of different realizations, show excellent agreement with our theoretical predictions. We have probed various angular scales in the numerical work and considered sources at 14 different redshifts in each of two different cosmological scenarios, an open cosmology and a flat cosmology with non-zero cosmological constant. Our simulation technique employs computations of the full three-dimensional shear matrices along the line of sight from the source redshift to the observer and is complementary to more popular ray-tracing algorithms. Our results therefore provide a valuable cross-check for such complementary simulation techniques, as well as for our simple analytical model, from the linear to the highly non-linear regime.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据