4.6 Article

Bruton's tyrosine kinase phosphorylates cAMP-responsive element-binding protein at serine 133 during neuronal differentiation in immortalized hippocampal progenitor cells

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 279, 期 3, 页码 1827-1837

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M308722200

关键词

-

向作者/读者索取更多资源

Bruton's tyrosine kinase (BTK) is a member of the Tec family of kinases, which is a subgroup of the nonreceptor cytoplasmic protein tyrosine kinases. BTK has been shown to be important in the proliferation, differentiation, and signal transduction of B cells. Mutations in BTK result in B cell immune deficiency disorders, such as X-linked agammaglobulinemia in humans and X-linked immunodeficiency in mice. Although BTK plays multiple roles in the life of a B cell, its functional role in neuronal cells has not been elucidated. In the present study, we demonstrate that BTK activates transcription factor, cAMP response element (CRE)-binding protein (CREB), and subsequent CRE-mediated gene transcription during basic fibroblast growth factor (bFGF)-induced neuronal differentiation in immortalized hippocampal progenitor cells (H19-7). The kinase activity of BTK is also induced by bFGF, and BTK directly phosphorylates CREB at Ser-133 residue, indicating that BTK has a dual protein kinase activity. In addition, blockading BTK activation significantly inhibits CREB phosphorylation as well as the neurite outgrowth induced by bFGF in H19-7 cells. These results suggest that the activation of BTK and the subsequent phosphorylation of CREB at Ser-133 are important in the neuronal differentiation of hippocampal progenitor cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据