4.6 Article

Interaction of the TAZ1 domain of the CREB-binding protein with the activation domain of CITED2 - Regulation by competition between intrinsically unstructured ligands for non-identical binding sites

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 279, 期 4, 页码 3042-3049

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M310348200

关键词

-

资金

  1. NCI NIH HHS [CA96865] Funding Source: Medline

向作者/读者索取更多资源

The TAZ1 domain of the homologous transcriptional coactivators CREB-binding protein (CBP) and p300 forms a complex with CITED2 (CBP/p300-interacting transactivator with ED-rich tail), inhibiting the activity of the hypoxia inducible factor (HIF-1alpha) and thereby attenuating the cellular response to low tissue oxygen concentration. We report the NMR structure of the CBP TAZ1 domain bound to the activation domain of CITED2. The structure of TAZ1, consisting of four alpha-helices (alpha(1)-alpha(4)) stabilized by three zinc atoms, is very similar in the CITED2 and HIF-1alpha complexes. The activation domain of CITED2 is unstructured when free and folds upon binding, forming a helix (termed alpha(A)) and an extended structure that wraps around TAZ1. The CITED2 alpha(A) helix packs in the TAZ1 alpha(1)/alpha(4) interface, a site that forms weak interactions with the poorly defined amino-terminal alpha-helix of HIF-1alpha. CITED2 and HIF-1alpha both contain a four residue motif,LP(E/Q)L, which binds in the TAZ1 alpha(1)/alpha(2)/alpha(3) junction in each complex. The carboxyl-terminal region of CITED2 forms an extended structure with hydrophobic contacts in the TAZ1 alpha(1)/alpha(3) interface in the site occupied by the HIF-1alpha alpha(B) helix. CITED2 does not bind at all to the TAZ1 site occupied by the HIF-1alpha carboxyl-terminal helix. The HIF-1alpha and CITED2 domains utilize partly overlapping surfaces of TAZ1 to achieve high affinity binding and to compete effectively with each other for interaction with CBP/p300; CITED2 and HIF-1alpha use these binding sites differently to maintain similar binding affinities in order to displace each other in a feedback loop during the hypoxic response.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据