4.6 Article

Effects of acute and chronic endurance exercise on mitochondrial uncoupling in human skeletal muscle

期刊

JOURNAL OF PHYSIOLOGY-LONDON
卷 554, 期 3, 页码 755-763

出版社

WILEY
DOI: 10.1113/jphysiol.2003.055202

关键词

-

向作者/读者索取更多资源

Mitochondrial proteins such as uncoupling protein 3 (UCP3) and adenine nucleotide translocase (ANT) may mediate back-leakage of protons and serve as uncouplers of oxidative phosphorylation. We hypothesized that UCP3 and ANT increase after prolonged exercise and/or endurance training, resulting in increased uncoupled respiration (UCR). Subjects were investigated with muscle biopsies before and after acute exercise (75 min of cycling at 70% of (V) over dot (O2peak)) or 6 weeks endurance training. Mitochondria were isolated and respiration measured in the absence (UCR or state 4) and presence of ADP (coupled respiration or state 3). Protein expression of UCP3 and ANT was measured with Western blotting. After endurance training (V) over dot (O2peak) citrate synthase activity (CS), state 3 respiration and ANT increased by 24, 47, 40 and 95%, respectively (all P < 0.05), whereas UCP3 remained unchanged. When expressed per unit of CS (a marker of mitochondrial volume) UCP3 and UCR decreased by 54% and 18% (P < 0.05). CS increased by 43% after acute exercise and remained elevated after 3 h of recovery (P < 0.05), whereas the other muscle parameters remained unchanged. An intriguing finding was that acute exercise reversibly enhanced the capacity of mitochondria to accumulate Ca2+ (p < 0.05) before opening of permeability transition pores. In conclusion, UCP3 protein and UCR decrease after endurance training when related to mitochondrial volume. These changes may prevent excessive basal thermogenesis. Acute exercise enhances mitochondrial resistance to Ca2+ overload but does not influence UCR or protein expression of UCP3 and ANT. The increased Ca2+ resistance may prevent mitochondrial degradation and the mechanism needs to be further explored.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据