4.5 Article

Nicotinamide clearance by Pnc1 directly regulates Sir2-mediated silencing and longevity

期刊

MOLECULAR AND CELLULAR BIOLOGY
卷 24, 期 3, 页码 1301-1312

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/MCB.24.3.1301-1312.2004

关键词

-

资金

  1. NIA NIH HHS [AG022685] Funding Source: Medline
  2. NIGMS NIH HHS [GM08136, R01 GM061692, GM61692, S06 GM008136] Funding Source: Medline

向作者/读者索取更多资源

The Saccharomyces cerevisiae Sir2 protein is an NAD(+)-dependent histone deacetylase (HDAC) that functions in transcriptional silencing and longevity. The NAD+ salvage pathway protein, Npt1, regulates Sir2-mediated processes by maintaining a sufficiently high intracellular NAD+ concentration. However, another NAD(+) salvage pathway component, Pnc1, modulates silencing independently of the NAD+ concentration. Nicotinamide (NAM) is a by-product of the Sir2 deacetylase reaction and is a natural Sir2 inhibitor. Pnc1 is a nicotinamidase that converts NAM to nicotinic acid. Here we show that recombinant Pnc1 stimulates Sir2 HDAC activity in vitro by preventing the accumulation of NAM produced by Sir2. In vivo, telomeric, rDNA, and HM silencing are differentially sensitive to inhibition by NAM. Furthermore, PNC1 overexpression suppresses the inhibitory effect of exogenously added NAM on silencing, life span, and Hst1-mediated transcriptional repression. Finally, we show that stress suppresses the inhibitory effect of NAM through the induction of PNC1 expression. Pnc1, therefore, positively regulates Sir2-mediated silencing and longevity by preventing the accumulation of intracellular NAM during times of stress.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据