4.7 Article

Theory of non-Markovian stochastic resonance -: art. no. 021104

期刊

PHYSICAL REVIEW E
卷 69, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.69.021104

关键词

-

向作者/读者索取更多资源

We consider a two-state model of non-Markovian stochastic resonance (SR) within the framework of the theory of renewal processes. Residence time intervals are assumed to be mutually independent and characterized by some arbitrary nonexponential residence time distributions which are modulated in time by an externally applied signal. Making use of a stochastic path integral approach we obtain general integral equations governing the evolution of conditional probabilities in the presence of an input signal. These equations generalize earlier integral renewal equations by Cox and others to the case of driving-induced nonstationarity. On the basis of these equations a response theory of two-state renewal processes is formulated beyond the linear response approximation. Moreover, a general expression for the linear response function is derived. The connection of the developed approach with the phenomenological theory of linear response for manifest non-Markovian SR put forward [I. Goychuk and P. Hanggi, Phys. Rev. Lett. 91, 070601 (2003)] is clarified and its range of validity is scrutinized. The theory is then applied to SR in symmetric non-Markovian systems and to the class of single ion channels possessing a fractal kinetics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据