4.5 Article

Involvement of Rho family GTPases in p19Arf-and p53-mediated proliferation of primary mouse embryonic fibroblasts

期刊

MOLECULAR AND CELLULAR BIOLOGY
卷 24, 期 3, 页码 1426-1438

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/MCB.24.3.1426-1438.2004

关键词

-

资金

  1. NIGMS NIH HHS [GM53943, GM60523, R01 GM060523, R01 GM053943] Funding Source: Medline

向作者/读者索取更多资源

The Rho family GTPases Rac1, RboA, and Cdc42 function as molecular switches that transduce intracellular signals regulating gene expression and cell proliferation as well as cell migration. p19(Arf) and p53, on the other band, are tumor suppressors that act both independently and sequentially to regulate cell proliferation. To investigate the functional interaction and cooperativeness of Rho GTPases with the p19(Arf) p53 pathway, we examined the contribution of Rho GTPases to the gene transcription and cell proliferation unleashed by deletion of p19(Arf) or p53 in primary mouse embryo fibroblasts. We found that (i) P19(Arf) or p53 deficiency led to a significant increase in PI 3-kinase activity, which in turn upregulated RhoA and Rac1 activities; (ii) deletion of p19Arf or p53 led to an increase in cell growth rate that was in part dependent on RhoA, Rac1, and Cdc42 activities; (iii) p19Arf or p53 deficiency caused an enhancement of the growth-related transcription factor NF-kappaB and cyclin D1 activities that are partly dependent on RhoA or Cdc42 but not on Rac1; (iv) forced expression of the activating mutants of Rac1, RhoA, or Cdc42 caused a hyperproliferative phenotype of the p19Arf(-/-) and p53(-/-) cells and promoted transformation of both cells; (v) RhoA appeared to contribute to p53-regulated cell proliferation by modulating cell cycle machinery, while hyperactivation of RhoA further suppressed a p53-independent apoptotic signal; and (vi) multiple pathways regulated by RhoA, including that of Rho-kinase, were required for RhoA to fully promote the transformation of p53(-/-) cells. Taken together, these results provide strong evidence indicating that signals through the Rho family GTPases can both contribute to cell growth regulation by p19Arf and p53 and cooperate with p19Arf or p53 deficiency to promote primary cell transformation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据