4.3 Article

p38γ MAPK regulation of glucose transporter expression and glucose uptake in L6 myotubes and mouse skeletal muscle

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpregu.00563.2003

关键词

mitogen-activated protein kinase; exercise; GLUT1; GLUT4

资金

  1. NIAMS NIH HHS [R01-AR-42238, R01-AR-45670, F32-AR-049662] Funding Source: Medline

向作者/读者索取更多资源

Skeletal muscle expresses at least three p38 MAPKs (alpha, beta, gamma). However, no studies have examined the potential regulation of glucose uptake by p38gamma, the isoform predominantly expressed in skeletal muscle and highly regulated by exercise. L6 myotubes were transfected with empty vector (pCAGGS), activating MKK6 (MKK6CA), or p38gamma-specific siRNA. MKK6CA-transfected cells had higher rates of basal 2-deoxy-D-[H-3] glucose (2-DG) uptake (P < 0.05) but lower rates of 2,4-dinitrophenol (DNP)-stimulated glucose uptake, an uncoupler of oxidative phosphorylation that operates through an insulin-independent mechanism ( P < 0.05). These effects were reversed when MKK6CA cells were cotransfected with p38gamma-specific siRNA. To determine whether the p38gamma isoform is involved in the regulation of contraction-stimulated glucose uptake in adult skeletal muscle, the tibialis anterior muscles of mice were injected with pCAGGS or wild-type p38gamma (p38gammaWT) followed by intramuscular electroporation. Basal and contraction-stimulated 2-DG uptake in vivo was determined 14 days later. Overexpression of p38gammaWT resulted in higher basal rates of glucose uptake compared with pCAGGS ( P < 0.05). Muscles overexpressing p38γWT showed a trend for lower in situ contraction-mediated glucose uptake ( P = 0.08) and significantly lower total GLUT4 levels ( P < 0.05). These data suggest that p38gamma increases basal glucose uptake and decreases DNP- and contraction-stimulated glucose uptake, partially by affecting levels of glucose transporter expression in skeletal muscle. These findings are consistent with the hypothesis that activation of stress kinases such as p38 are negative regulators of stimulated glucose uptake in peripheral tissues.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据