4.5 Article

MurAA, catalysing the first committed step in peptidoglycan biosynthesis, is a target of Clp-dependent proteolysis in Bacillus subtilis

期刊

MOLECULAR MICROBIOLOGY
卷 51, 期 4, 页码 1087-1102

出版社

WILEY-BLACKWELL
DOI: 10.1046/j.1365-2958.2003.03875.x

关键词

-

向作者/读者索取更多资源

The carboxyvinyl transfer from phosphoenolpyruvate to UDP-N-acetylglucosamine is the first committed step in the pathway of peptidoglycan formation. This crucial reaction for bacterial cell growth is catalysed by the MurA enzymes. Gram-negative bacteria carry one murA gene, whereas in a subgroup of Gram-positive bacteria two separate paralogues, MurAA and MurAB, exist. This study provides evidence that in the Gram-positive bacterium Bacillus subtilis, the MurAA protein is specifically degraded by the ClpCP protease. This Clp-dependent degradation is especially enhanced upon entry into stationary phase, thus ensuring an immediate growth arrest due to stalled murein biosynthesis. The MurAA protein can therefore be addressed as a target of Clp-dependent regulatory proteolysis such as the transcriptional regulators CtsR, ComK, Spx in B. subtilis, CtrA in Caulobacter crescentus or RpoS in Escherichia coli. Taking into account all other known regulatory targets of ATP-dependent proteases, MurAA of B. subtilis represents the first example of a metabolic enzyme which is a unique regulatory substrate of Clp-dependent proteolysis. Its function as a regulatory metabolic checkpoint resembles that of homoserine trans-succinylase (MetA) in E. coli which is similarly ATP-dependently degraded.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据