4.8 Article

Lamin A/C deficiency causes defective nuclear mechanics and mechanotransduction

期刊

JOURNAL OF CLINICAL INVESTIGATION
卷 113, 期 3, 页码 370-378

出版社

AMER SOC CLINICAL INVESTIGATION INC
DOI: 10.1172/JCI200419670

关键词

-

向作者/读者索取更多资源

Mutations in the lamin A/C gene (LMNA) cause a variety of human diseases including Emery-Drei-fuss muscular dystrophy, dilated cardiomyopathy, and Hutchinson-Gilford progeria syndrome. The tissue-specific effects of lamin mutations are unclear, in part because the function of lamin A/C is incompletely defined, but the many muscle-specific phenotypes suggest that defective lamin A/C could increase cellular mechanical sensitivity. To investigate the role of lamin A/C in mechanotransduction, we subjected lamin A/C-deficient mouse embryo fibroblasts to mechanical strain and measured nuclear mechanical properties and strain-induced signaling. We found that Lmna(-/-) cells have increased nuclear deformation, defective mechanotransduction, and impaired viability under mechanical strain. NF-kappaB-regulated transcription in response to mechanical or cytokine stimulation was attenuated in Lmna(-/-) cells despite increased transcription factor binding. Lamin A/C deficiency is thus associated with both defective nuclear mechanics and impaired mechanically activated gene transcription. These findings suggest that the tissue-specific effects of lamin A/C mutations observed in the laminopathies may arise from varying degrees of impaired nuclear mechanics and transcriptional activation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据