4.6 Article

ERK activation by mechanical strain is regulated by the small G proteins rac-1 and rhoA

期刊

EXPERIMENTAL DERMATOLOGY
卷 13, 期 2, 页码 70-77

出版社

WILEY
DOI: 10.1111/j.0906-6705.2004.00117.x

关键词

mechanical strain; human fibroblast; MAPK; small G protein; cytoskeleton

向作者/读者索取更多资源

Physical forces play an important role in regulating cell functions. We applied mechanical strain to human fibroblasts by magnetic attraction of superparamagnetic arginine-glycine-aspartic acid (RGD)-coated beads. We confirmed that the MAP kinases Erk and p38 are activated by mechanical strain, and went further by demonstrating the activation of Elk-1 by mechanical strain, mainly through a MEK-Erk pathway. Transfection of a dominant negative form of the G protein rac-1 (rac T17N), and inhibition of PI3K, an effector of rac-1, efficiently prevented Elk-1 activation by mechanical forces. Transfection with C3 transferase, known to inhibit rhoA, and inhibition of rock (a downstream effector of rhoA), gave similar results. However, contrary to the active form of rhoA (rho G14V), transfection of the active form of rac-1 (rac G12V) induced Elk activation and mimicked the effects of mechanical strain. These results point out that the two small G proteins rhoA and rac-1 participate in cell sensitivity to mechanical strain and lead to the modulation of the Erk pathway.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据