4.8 Article

Molecular adaptation of Chrysochus leaf beetles to toxic compounds in their food plants

期刊

MOLECULAR BIOLOGY AND EVOLUTION
卷 21, 期 2, 页码 218-221

出版社

OXFORD UNIV PRESS
DOI: 10.1093/molbev/msg240

关键词

Chrysochus; Na plus /K plus -ATPase alpha-subunit; cardenolide; ouabain binding site

向作者/读者索取更多资源

Herbivores that feed on toxic plants must overcome plant defenses and occasionally may even benefit from them. The current challenge is to understand how herbivores evolve the necessary physiological adaptations and which changes at the molecular level are involved. In this context we studied the leaf beetles genus Chrysochus (Coleoptera, Chrysomelidae). Two species of this genus, C. auratus and C. cobaltinus, feed on plants that contain toxic cardenolides. These beetles not only avoid poisoning by the toxin but also use it for their own defense against predators. All other Chrysochus species feed on plants that are devoid of cardenolides. The most important active principle of cardenolides is their capacity to bind to and thereby block the ubiquitous Na+/K+-ATPase responsible for maintaining cellular potentials. By analyzing the DNA sequence of the putative ouabain-binding site of the alpha-subunit of the Na+/K+-ATPase gene of Chrysochus and its close relatives feeding on plants with or without cardenolides, we here trace the evolution of cardenolide insensitivity in this group of beetles. The most interesting difference among the sequences involves the amino acid at position 122. Whereas all species that do not encounter cardenolides have an asparagine in this position, both Chrysochus species that feed on cardenolide plants have a histidine instead. This single amino acid substitution has already been shown to confer cardenolide insensitivity in the monarch butterfly. A mtDNA-based phylogeny corroborates the hypothesis that the asparagine at position 122 of the alpha-subunit of the Na+/K+-ATPase gene as observed in Drosophila and other insects is the plesiomorphic condition in this group of leaf beetles. The later host-plant switch to cardenolide-containing plants in the common ancestor of C. auratus and C. cobaltinus coincides with the exchange of the asparagine for a histidine in the ouabain binding site.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据