4.1 Article Proceedings Paper

Inverse geometry problem of estimating the phase front motion of ice in a thermal storage system

期刊

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/10682760410001633237

关键词

inverse geometry problem; phase front motion; thermocouple spacing

向作者/读者索取更多资源

The moving phase change interface in the latent heat energy storage system is estimated by applying a two-dimensional inverse geometry problem. The energy storage system of the vertical tube type is considered for the present inverse geometry problem. To solve the phase change problem, the boundary element method is adopted. The moving phase change interface is estimated by using the conjugate gradient method. Estimation of the phase front motion is verified by conducting the inverse analysis for an assumed phase front motion. An inverse analysis for the desired temperature distributions is executed to investigate the possibility of desired front motion control or ice monitoring. The effects of the noise levels and the thermocouple spacing on the inverse solutions are also examined.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据