4.3 Article

Fractal modeling of human isochronous serial interval production

期刊

BIOLOGICAL CYBERNETICS
卷 90, 期 2, 页码 105-112

出版社

SPRINGER
DOI: 10.1007/s00422-003-0453-3

关键词

-

向作者/读者索取更多资源

The Hurst exponent (H) was estimated for series of 256 time intervals produced by human participants, collected in 5 sessions performed on different days. Each series was obtained during the continuation phase following synchronization with 25 isochronous intervals generated by a computer and presented through headphones. Dispersional analysis yielded estimates of H>0.5. These were sufficiently stable to yield statistically significant differences between participants and between each target interval duration (0.5, 0.8, 1.1, and 1.5 s). The results indicate that variability in isochronous serial interval production (ISIP) can be modeled as fractional Gaussian noise, which corroborates and qualifies previous research indicating positive serial dependency or long memory in ISIP data in terms of drift and 1/f noise characteristics. It is concluded that ISIP is a more complex process than is assumed by influential timing models and theories, and that realistic modeling of human timing must account for nonlinear variability patterns.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据