4.6 Article

Medium perfusion enables engineering of compact and contractile cardiac tissue

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpheart.00171.2003

关键词

tissue engineering; cardiac muscle; contractile proteins; contractile function

向作者/读者索取更多资源

We hypothesized that functional constructs with physiological cell densities can be engineered in vitro by mimicking convective-diffusive oxygen transport normally present in vivo. To test this hypothesis, we designed an in vitro culture system that maintains efficient oxygen supply to the cells at all times during cell seeding and construct cultivation and characterized in detail construct metabolism, structure, and function. Neonatal rat cardiomyocytes suspended in Matrigel were cultured on collagen sponges at a high initial density (1.35x10(8) cells/cm(3)) for 7 days with interstitial flow of medium; constructs cultured in orbitally mixed dishes, neonatal rat ventricles, and freshly isolated cardiomyocytes served as controls. Constructs were assessed at timed intervals with respect to cell number, distribution, viability, metabolic activity, cell cycle, presence of contractile proteins (sarcomeric alpha-actin, troponin I, and tropomyosin), and contractile function in response to electrical stimulation [excitation threshold (ET), maximum capture rate (MCR), response to a gap junctional blocker]. Interstitial flow of culture medium through the central 5-mm-diameter x 1.5-mm-thick region resulted in a physiological density of viable and differentiated, aerobically metabolizing cells, whereas dish culture resulted in constructs with only a 100- to 200-mum-thick surface layer containing viable and differentiated but anaerobically metabolizing cells around an acellular interior. Perfusion resulted in significantly higher numbers of live cells, higher cell viability, and significantly more cells in the S phase compared with dish-grown constructs. In response to electrical stimulation, perfused constructs contracted synchronously, had lower ETs, and recovered their baseline function levels of ET and MCR after treatment with a gap junctional blocker; dish-grown constructs exhibited arrhythmic contractile patterns and failed to recover their baseline MCR levels.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据