4.5 Article

Swarm algorithm for single- and multiobjective airfoil design optimization

期刊

AIAA JOURNAL
卷 42, 期 2, 页码 366-373

出版社

AMER INST AERONAUTICS ASTRONAUTICS
DOI: 10.2514/1.9099

关键词

-

向作者/读者索取更多资源

Shape optimization of airfoils involves highly expensive, nonlinear objective(s) and constraint functions often with functional and slope discontinuity that limits the efficient use of gradient-based methods for its solution. Gradient-based methods are not capable of generating a set of pareto solutions as required in multiobjective problems as they work with a single solution and improve it through successive iterations. Population-based, zero-order, stochastic optimization methods are therefore an attractive choice for shape optimization problems as they are easy to implement and effective for highly nonlinear problems. We present a swarm algorithm that is applicable for optimization problems in general, but is here explored for airfoil design optimization studies. The algorithm is based on a sociobehavioral model, and it offers the designer the desired flexibility to solve various unconstrained/constrained, single-/multiobjective forms of the airfoil shape optimization problem. The algorithm handles objectives and constraints separately via pareto ranking and is thus immune to problems of scaling and aggregation that commonly affect penalty-function-based constraint handling schemes. Three different airfoil design optimization problems have been solved to illustrate the algorithm's flexibility and its computational efficiency, which compare favorably with existing stochastic search methods.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据