4.8 Article

Conditional disruption of IκB kinase 2 fails to prevent obesity-induced insulin resistance

期刊

JOURNAL OF CLINICAL INVESTIGATION
卷 113, 期 3, 页码 474-481

出版社

AMER SOC CLINICAL INVESTIGATION INC
DOI: 10.1172/JCI200418712

关键词

-

向作者/读者索取更多资源

The inhibitor of NF-kappaB (IkappaB) kinases (IKK1 [alpha] and IKK2 [beta]), the catalytic subunits of the IKK complex, phosphorylate IkappaB proteins on serine residues, targeting them for degradation and thus activating the transcription factor NF-kappaB. More recently, IKK2 has been implicated in mediation of insulin resistance caused by obesity, lipid infusion, and TNF-alpha, stimulation, since salicylate and aspirin, known inhibitors of IKK activity, can reverse insulin resistance in obese mouse models. To further genetically elucidate the role of IKK2 in obesity-mediated insulin resistance, we have conditionally inactivated the mouse IKK2 gene in adult myocytes by Cre-loxP-mediated recombination in vivo. We have investigated the development of obesity-induced insulin resistance in muscle-specific IKK2 knockout mice and mice exhibiting a 50% reduction of IKK2 expression in every tissue and have found that, after gold thioglucose treatment, wild-type and mutant mice developed obesity to a similar extent. Surprisingly, no difference in obesity-induced insulin resistance was detectable, either at a physiological or at a molecular level. Moreover, impaired glucose tolerance resulting from a high-fat diet occurred to the same degree in control and IKK2 mutant mice. These data argue against a substantial role for muscular IKK2 in mediating obesity-induced insulin resistance in these models in vivo.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据