4.7 Article

Morphology of rising hydrodynamic and magnetohydrodynamic bubbles from numerical simulations

期刊

ASTROPHYSICAL JOURNAL
卷 601, 期 2, 页码 621-643

出版社

IOP PUBLISHING LTD
DOI: 10.1086/380817

关键词

cooling flows; galaxies : clusters : general; hydrodynamics; instabilities; MHD; X-rays : galaxies : clusters

向作者/读者索取更多资源

Recent Chandra and XMM-Newton observations of galaxy cluster cooling flows have revealed X-ray emission voids of up to 30 kpc in size that have been identified with buoyant, magnetized bubbles. Motivated by these observations, we have investigated the behavior of rising bubbles in stratified atmospheres using the FLASH(9) adaptive-mesh simulation code. We present results from two-dimensional simulations with and without the effects of magnetic fields and with varying bubble sizes and background stratifications. We find purely hydrodynamic bubbles to be unstable; a dynamically important magnetic field is required to maintain a bubble's integrity. This suggests that, even absent thermal conduction, for bubbles to be persistent enough to be regularly observed, they must be supported in large part by magnetic fields. Thermal conduction unmitigated by magnetic fields can dissipate the bubbles even faster. We also observe that the bubbles leave a tail as they rise; the structure of these tails can indicate the history of the dynamics of the rising bubble.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据