4.7 Article

Molecular dynamics simulations of peptides from the central domain of smooth muscle caldesmon

期刊

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/07391102.2004.10506948

关键词

alpha-helix stabilization; salt bridges; pi-helix

向作者/读者索取更多资源

The central domain of smooth muscle caldesmon contains a highly charged region consisting of ten 13-residue repeats. Experimental evidence obtained from the intact protein and fragments thereof suggests that this entire region forms a single stretch of stable alpha-helix. We have carried out molecular dynamics simulations on peptides consisting of one, two and three repeats to examine the mechanism of alpha-helical stability of the central domain at the atomic level. All three peptides show high helical stability on the timescale of the MD simulations. Deviations from alpha-helical structure in all the simulations arise mainly from the formation of long stretches of pi-helix. Interconversion between alpha-helical and pi-helical conformations occurs through insertion of water molecules into alpha-helical hydrogen bonds and subsequent formation of reverse turns. The alpha-helical structure is stabilized by electrostatic interactions (salt bridges) between oppositely charged sidechains with i,i+4 spacings, while the pi-helix is stabilized by i,i+5 salt bridge interactions. Possible i,i+3 salt bridges are of minor importance. There is a strong preference for salt bridges with a Glu residue N-terminal to a basic sidechain as compared to the opposite orientation. In the double and triple repeat peptides, strong i,i+4 salt bridges exist between the last Glu residue of one repeat and the first Lys residue of the next. This demonstrates a relationship between the repetitive nature of the central domain sequence and its ability to form very long stretches of alpha-helical structure.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据