4.5 Article

A water-powered micro drug delivery system

期刊

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JMEMS.2003.823215

关键词

drug delivery; microactuator; microfluidics; osmosis; PDMS

向作者/读者索取更多资源

A plastic micro drug delivery system has been successfully demonstrated by utilizing the principle of osmosis without any electrical power consumption. The system has an osmotic microactuator (see Su, Lin, and Pisano, J. Microelectromech., vol. 11, pp. 736-7462, Dec. 2002) and a polydimethylsiloxane (PDMS) microfluidic cover compartment consisting of a reservoir, a microfluidic channel and a delivery port. The typical dimension of the microfluidic channel is 1 cm in length with a cross-sectional area of 30 x 100 mum(2) to minimize the diffusive drug flow while pressure drop remains moderate. Using oxygen plasma to activate the surfaces of polymers for bonding, the osmotic actuator is bonded with the PDMS cover while liquid drug can be encapsulated during the bonding process. Employing the net water flow induced by osmosis, the prototype drug delivery system has a measured constant delivery rate at 0.2 muL/h for 10 h with an accumulated delivery volume of 2 muL. Both the delivery rate and volume could be altered by changing the design and process parameters for specific drug delivery applications up to a few years. Moreover, the induced osmotic pressure can be as high as 25 MPa to overcome possible blockages caused by cells or tissues during drug delivery operations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据