4.6 Article

Phenomenological theory of current-induced magnetization precession

期刊

PHYSICAL REVIEW B
卷 69, 期 5, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.69.054408

关键词

-

向作者/读者索取更多资源

We solve appropriate drift-diffusion and Landau-Lifshitz-Gilbert equations to demonstrate that unpolarized current flow from a nonmagnet into a ferromagnet can produce a precession-type instability of the magnetization. The fundamental origin of the instability is the difference in conductivity between majority spins and minority spins in the ferromagnet. This leads to spin accumulation and spin currents that carry angular momentum across the interface. The component of this angular momentum perpendicular to the magnetization drives precessional motion that is opposed by Gilbert damping. Neglecting magnetic anisotropy and magnetostatics, our approximate analytic and exact numerical solutions using realistic values for the material parameters show (for both semi-infinite and thin-film geometries) that a linear instability occurs when both the current density and the excitation wave vector parallel to the interface are neither too small nor too large. For many aspects of the problem, the variation of the magnetization in the direction of the current flows makes an important contribution.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据