3.8 Article Proceedings Paper

Recombinant AAV-mediated gene delivery to the central nervous system

期刊

JOURNAL OF GENE MEDICINE
卷 6, 期 -, 页码 S212-S222

出版社

WILEY
DOI: 10.1002/jgm.506

关键词

AAV; enzyme replacement; neuroprotection; excitability; neurological disorders

向作者/读者索取更多资源

Various regions of the brain have been successfully transduced by recombinant adeno-associated virus (rAAV) vectors with no detected toxicity. When using the cytomegalovirus immediate early (CMV) promoter, a gradual decline in the number of transduced cells has been described. in contrast, the use of cellular promoters such as the neuron-specific enolase promoter or hybrid promoters such as the chicken beta-actin/CMV promoter resulted in sustained transgene expression. The cellular tropism of rAAV-mediated gene transfer in the central nervous system (CNS) varies depending on the serotype used. Serotype 2 vectors preferentially transduce neurons whereas rAAV5 and rAAV1 transduce both neurons and glial cells. Recombinant AAV4-mediated gene transfer was inefficient in neurons and glial cells of the striatum (the only structure tested so far) but efficient in ependymal cells. No inflammatory response has been described following rAAV2 administration to the brain. In contrast, antibodies to AAV2 capsid and transgene product were elicited but no reduction of transgene expression was observed and readministration of vector without loss of efficiency was possible from 3 months after the first injection. Based on the success of pioneer work performed with marker genes, various strategies for therapeutic gene delivery were designed. These include enzyme replacement in lysosomal storage diseases, Canavan disease and Parkinson's disease; delivery of neuroprotective factors in Parkinson's disease, Huntington disease, Alzheimer's disease, amyotrophic lateral sclerosis, ischemia and spinal cord injury; as well as modulation of neurotransmission in epilepsy and Parkinson's disease. Several of these strategies have demonstrated promising results in relevant animal models. However, their implementation in the clinics will probably require a tight regulation and a specific targeting of therapeutic gene expression which still demands further developments of the vectors. Copyright (C) 2004 John Wiley Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据