4.4 Article

Acid-responsive gene induction of ammonia-producing enzymes in Helicobacter pylori is mediated via a metal-responsive repressor cascade

期刊

INFECTION AND IMMUNITY
卷 72, 期 2, 页码 766-773

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/IAI.72.2.766-773.2004

关键词

-

向作者/读者索取更多资源

Although the adaptive mechanisms allowing the gastric pathogen Helicobacter pylori to survive acid shocks have been well documented, the mechanisms allowing growth at mildly acidic conditions (pH similar to5.5) are still poorly understood. Here we demonstrate that H. pylori strain 26695 increases the transcription and activity of its urease, amidase, and formamidase enzymes four- to ninefold in response to growth at pH 5.5. Supplementation of growth medium with NiCl2 resulted in a similar induction of urease activity (at low NiCl2 concentration) and amidase activity (at greater than or equal to500 muM NiCl2) but did not affect formamidase activity. Mutation of the fur gene, which encodes an iron-responsive repressor of both amidases, resulted in a constitutively high level of amidase and formamidase activity at either pH but did not affect urease activity at pH 7.0 or pH 5.5. In contrast, mutation of the nikR gene, encoding the nickel-responsive activator of urease expression, resulted in a significant reduction of acid-responsive induction of amidase and formamidase activity. Finally, acid-responsive repression of fur transcription was absent in the H. pylori nikR mutant, whereas transcription of the nikR gene itself was increased at pH 5.5 in wild-type H. pylori. We hypothesize that H. pylori uses a repressor cascade to respond to low pH, with NikR initiating the response directly via the urease operon and indirectly via the members of the Fur regulon.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据