4.8 Article

DNA dynamically directs its own transcription initiation

期刊

NUCLEIC ACIDS RESEARCH
卷 32, 期 4, 页码 1584-1590

出版社

OXFORD UNIV PRESS
DOI: 10.1093/nar/gkh335

关键词

-

资金

  1. NHLBI NIH HHS [HL624458] Funding Source: Medline
  2. NIGMS NIH HHS [R01 GM073911] Funding Source: Medline

向作者/读者索取更多资源

It has long been known that double-stranded DNA is subject to temporary, localized openings of its two strands. Particular regions along a DNA polymer are destabilized structurally by available thermal energy in the system. The localized sequence of DNA determines the physical properties of a stretch of DNA, and that in turn determines the opening profile of that DNA fragment. We show that the Peyrard-Bishop nonlinear dynamical model of DNA, which has been used to simulate denaturation of short DNA fragments, gives an accurate representation of the instability profile of a defined sequence of DNA, as verified using S1 nuclease cleavage assays. By comparing results for a non-promoter DNA fragment, the adenovirus major late promoter, the adeno-associated viral P5 promoter and a known P5 mutant promoter that is inactive for transcription, we show that the predicted openings correlate almost exactly with the promoter transcriptional start sites and major regulatory sites. Physicists have speculated that localized melting of DNA might play a role in gene transcription and other processes. Our data link sequence-dependent opening behavior in DNA to transcriptional activity for the first time.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据