4.4 Article

Solution structure and functional characterization of SGTxl, a modifier of Kv2.1 channel gating

期刊

BIOCHEMISTRY
卷 43, 期 4, 页码 890-897

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bi0353373

关键词

-

资金

  1. Intramural NIH HHS [ZIA NS002945-13] Funding Source: Medline

向作者/读者索取更多资源

SGTx1 is a peptide toxin isolated from the venom of the spider Scodra griseipes that has been shown to inhibit outward K+ currents in rat cerebellar granule neurons. Although its amino acid sequence is known to be highly (76%) homologous with that of hanatoxin (HaTx), a well-characterized modifier of Kv2.1 channel gating, the structural and functional characteristics of SGTx1 remain largely unknown. Here we describe the NMR solution structure of SGTx1, the mechanism of its interaction with Kv2.1 channels, and its effect on channel activity once bound. The NMR structure of SGTx1 contains a molecular fold closely resembling the inhibitor cystine knot of HaTx, which is composed of an antiparallel beta-sheet and four chain reversals stabilized by three disulfide bonds. Functionally, SGTx1 reversibly inhibited K+ currents in oocytes expressing Kv2.1 channels. Moreover, generation of steady-state activation curves showed that, consistent with other gating modifiers, SGTx1 acted by shifting the activation of the channel to more depolarized voltages. Thus, the surface profile and mechanism of action of SGTx1 are similar to those of HaTx. Still, detailed comparison of SGTx1 with HaTx revealed differences in binding affinity and conformational homogeneity that result from differences in the charge distribution at the binding surface and in the amino acid composition of the respective beta-hairpin structures in the peptides.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据