4.8 Article

Saccharomyces cerevisiae Sin3p facilitates DNA double-strand break repair

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0304797101

关键词

-

向作者/读者索取更多资源

There are two main pathways in eukaryotic cells for the repair of DNA double-strand breaks: homologous recombination and nonhomologous end joining. Because eukaryotic genomes are packaged in chromatin, these pathways are likely to require the modulation of chromatin structure. One way to achieve this is by the acetylation of lysine residues on the N-terminal tails of histones. Here we demonstrate that Sin3p and Rpd3p, components of one of the predominant histone deacetylase complexes of Saccharomyces cerevisiae, are required for efficient nonhomologous end joining. We also show that lysine 16 of histone H4 becomes deacetylated in the proximity of a chromosomal DNA double-strand break in a Sin3p-dependent manner. Taken together, these results define a role for the Sin3p/Rpd3p complex in the modulation of DNA repair.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据