4.7 Article

Inertial effects on polymer chain scission in planar elongational cross-slot flow

期刊

MACROMOLECULES
卷 37, 期 3, 页码 1023-1030

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ma035254u

关键词

-

向作者/读者索取更多资源

The molar mass and molar mass distribution of polymers subjected to chain scission in planar elongational flow are profoundly affected by the inertial character of the flow, as quantified by the Reynolds number. The degradation of dilute poly(ethylene oxide) (PEO) chains in aqueous-based solvents of varying viscosity was quantified in the planar elongational flow of a cross-slot flow device by gel permeation chromatography with multiangle laser light scattering detection. At low Reynolds number (Re < similar to1000), the steady-state weight-average molar mass, M-w,M-f, of the scission product distribution scaled with the nominal applied strain rate, epsilon, as epsilon proportional to M-w,f(-1.93+/-0.15) for PEO/viscous solvent system and epsilon proportional to M-w,f(-2.25+/-0.10) for the PEO/water system. At greater Reynolds number (Re > similar to1000), the observed scaling was epsilon proportional to M-w,f(-1.04+/-0.07). Differences of this kind, first quantified by comparing results from stagnation point elongation flows and contraction flows, have previously been attributed to different molecular mechanisms of scission. Yet, our observations in different Reynolds number regimes suggest an alternative explanation based on fluid mechanics for the difference in steady-state scaling exponent. Measurements of pressure drop across the cross-slot flow support this alternative hypothesis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据