4.6 Article

Spatial and monthly trends in speciated fine particle concentration in the United States

期刊

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2003JD003739

关键词

regional haze; fine aerosol composition; aerosol monitoring

向作者/读者索取更多资源

[1] In the spring of 1985 an interagency consortium of federal land management agencies and the Environmental Protection Agency established the Interagency Monitoring of Protected Visual Environments ( IMPROVE) network to assess visibility and aerosol monitoring for the purpose of tracking spatial and temporal trends of visibility and visibility-impairing particles in rural areas. The program was initiated with 20 monitoring sites and was expanded to 165 sites between 2000 and 2003. This paper reports on fine aerosol data collected in the year 2001 at 143 sites. The major fine (d(p) < 2.5 mu m) particle aerosol species, sulfates, nitrates, organics, light-absorbing carbon, and wind-blown dust, and coarse gravimetric mass are monitored, and at some sites, light scattering and/or extinction are measured. Sulfates, carbon, and crustal material are responsible for most of the fine mass at the majority of locations throughout the United States, while at sites in southern California and the midwestern United States, nitrates can contribute significantly. In the eastern United States, sulfates contribute between 50 and 60% of the fine mass. Sulfate concentrations tend to be highest in the summer months while organic concentrations can be high in the spring, summer, or fall seasons, depending upon fire-related emissions. However, at the two urban sites, Phoenix, Arizona, and Puget Sound, Washington, organics peak during the winter months. Nitrate concentrations also tend to be highest during the winter months. During the spring months in many areas of the western United States, fine soil can contribute as much as 40% of fine mass. The temporal changes in soil concentration that occur simultaneously over much of the western United States including the Rocky Mountain region suggest a large source region, possibly long-range transport of Asian dust.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据