4.8 Article

A membrane transport defect leads to a rapid attenuation of translation initiation in Saccharomyces cerevisiae

期刊

MOLECULAR CELL
卷 13, 期 3, 页码 357-366

出版社

CELL PRESS
DOI: 10.1016/S1097-2765(04)00008-5

关键词

-

向作者/读者索取更多资源

Transport of lipids and proteins is a highly regulated process, which is required to maintain the integrity of various intracellular organelles in eukaryotic cells. Mutations along the yeast secretory pathway repress transcription of rRNA, tRNA, and ribosomal protein genes. Here, we show that these mutations also lead to a rapid and specific attenuation of translation initiation that occurs prior to the transcriptional inhibition of ribosomal components. Using distinct vesicular transport mutants and chlorpromazine, we have identified the eIF2alpha kinase Gcn2p and the eIF4E binding protein Eap1p as major mediators of the translation attenuation response. Finally, in chlorpromazine-treated cells, this response does not require Wsc1p or the protein kinase Pkc1p, both of which are upstream of the transcriptional repression of ribosomal components. Altogether, our results suggest that yeast cells not only evolved a transcriptional but also a translational control to assure efficient attenuation of protein synthesis when membranes are stressed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据