4.4 Article

DSCR1 gene expression is dependent on NFATc1 during cardiac valve formation and colocalizes with anomalous organ development in trisomy 16 mice

期刊

DEVELOPMENTAL BIOLOGY
卷 266, 期 2, 页码 346-360

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ydbio.2003.10.036

关键词

DSCR1; MCIP1; ADAPT78; NFATc1; trisomy 16 mice; congenital heart defects; Down syndrome

资金

  1. NHLBI NIH HHS [HL069779, HL07752] Funding Source: Medline

向作者/读者索取更多资源

The Down syndrome critical region 1 (DSCR1) gene is present in the region of human chromosome 21 and the syntenic region of mouse chromosome 16, trisomy of which is associated with congenital heart defects observed in Down syndrome. DSCR1 encodes a regulatory protein in the calcineurin/NFAT signal transduction pathway. During valvuloseptal development in the heart, DSCR1 is expressed in the endocardium of the developing atrioventricular and semilunar valves, the muscular interventricular septum, and the ventricular myocardium. Human DSCR1 contains an NFAT-rich calcineurin-responsive element adjacent to exon 4. Transgenic mice generated with a homologous regulatory region of the mouse DSCR1 gene linked to lacZ (DSCR1(e4)/lacZ) show gene activation in the endocardium of the developing valves and aorticopulmonary septum of the heart, recapitulating a specific subdomain of endogenous DSCR1 cardiac expression. DSCR1(e4)1 lacZ expression in the developing valve endocardium colocalizes with NFATcl and, endocardial DSCRl(e4)/lacZ, is notably reduced or absent in NFATcl(-/-) embryos. Furthermore, expression of the endogenous DSCR1(e4) isoform is decreased in the outflow tract of NFATc1(-/-) hearts, and the DSCR1(e4) intragenic element is trans-activated by NFATc1 in cell culture. In trisomy 16 (Ts16) mice, expression of endogenous DSCR1 and DSCR1(e4)/lacZ colocalizes with anomalous valvuloseptal development, and transgenic Ts16 hearts have increased beta-galactosidase activity. DSCR1 and DSCR1(e4)/lacZ also are expressed in other organ systems affected by trisomy 16 in mice or trisomy 21 in humans including the brain, eye, ear, face, and limbs. Together, these results show that DSCR1(e4) expression in the developing valve endocardium is dependent on NFATcl and support a role for DSCR1 in normal cardiac valvuloseptal formation as well as the abnormal development of several organ systems affected in individuals with Down syndrome. (C) 2003 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据