4.8 Article

SNAP-25 modulation of calcium dynamics underlies differences in GABAergic and glutamatergic responsiveness to depolarization

期刊

NEURON
卷 41, 期 4, 页码 599-610

出版社

CELL PRESS
DOI: 10.1016/S0896-6273(04)00077-7

关键词

-

向作者/读者索取更多资源

SNAP-25 is a component of the SNARE complex implicated in synaptic vesicle exocytosis. In this study, we demonstrate that hippocampal GABAergic synapses, both in culture and in brain, lack SNAP-25 and are resistant to the action of botulinum toxins type A and E, which cleave this SNARE protein. Relative to glutamatergic neurons, which express SNAP-25, GABAergic cells were characterized by a higher calcium responsiveness to depolarization. Exogenous expression of SNAP-25 in GABAergic interneurons lowered calcium responsiveness, and SNAP-25 silencing in glutamatergic neurons increased calcium elevations evoked by depolarization. Expression of SNAP-25(1-197) but not of SNAP-25(1-180) inhibited calcium responsiveness, pointing to the involvement of the 180-197 residues in the observed function. These data indicate that SNAP-25 is crucial for the regulation of intracellular calcium dynamics and, possibly, of network excitability. SNAP-25 is therefore a multifunctional protein that participates in exocytotic function both at the mechanistic and at the regulatory level.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据