4.6 Article

SK3-1C, a dominant-negative suppressor of SKCa and IKCa channels

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 279, 期 8, 页码 6893-6904

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M311725200

关键词

-

资金

  1. NIMH NIH HHS [MH59222] Funding Source: Medline
  2. PHS HHS [1T32 N507444] Funding Source: Medline

向作者/读者索取更多资源

Small conductance Ca2+-activated K+ channels, products of the SK1-SK3 genes, regulate membrane excitability both within and outside the nervous system. We report the characterization of a SK3 variant (SK3-1C) that differs from SK3 by utilizing an alternative first exon (exon 1C) in place of exon 1A used by SK3, but is otherwise identical to SK3. Quantitative RT-PCR detected abundant expression of SK3-1C transcripts in human lymphoid tissues, skeletal muscle, trachea, and salivary gland but not the nervous system. SK3-1C did not produce functional channels when expressed alone in mammalian cells, but suppressed SK1, SK2, SK3, and IKCa1 channels, but not BKCa. or K-v channels. Confocal microscopy revealed that SK3-1C sequestered SK3 protein intracellularly. Dominant-inhibitory activity of SK3-1C was not due to a nonspecific calmodulin sponge effect since overexpression of calmodulin did not reverse SK3-1C-mediated intracellular trapping of SK3 protein, and calmodulin-Ca2+-dependent inactivation of Ca-v channels was not affected by SK3-1C overexpression. Deletion analysis identified a dominant-inhibitory segment in the SK3-1C C terminus that resembles tetramerization-coiled-coiled domains reported to enhance tetramer stability and selectivity of multimerization of many K+ channels. SK3-1C may therefore suppress calmodulin-gated SKCa/IKCa. channels by trapping these channel proteins intracellularly via subunit interactions mediated by the dominant-inhibitory segment and thereby reduce functional channel expression on the cell surface. Such family-wide dominant-negative suppression by SK3-1C provides a powerful mechanism to titrate membrane excitability and is a useful approach to define the functional in vivo role of these channels in diverse tissues by their targeted silencing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据