4.6 Article

Caveolin-1 knockdown by small interfering RNA suppresses responses to the chemokine monocyte chemoattractant protein-1 by human astrocytes

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 279, 期 8, 页码 6688-6695

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M311769200

关键词

-

资金

  1. NIMH NIH HHS [R01-MH54718] Funding Source: Medline

向作者/读者索取更多资源

Astrocytes regulate the integrity of the blood-brain barrier and influence inflammatory processes in the central nervous system. The pro-inflammatory chemokine monocyte chemoattractant protein-1 (MCP-1), which is both released by and stimulates astrocytes, is thought to play a crucial role in both these activities. Because astrocytes have been shown to possess caveolae, vesicular structures that participate in intracellular transport and signal transduction events, we reasoned that expression of the major structural protein of these organelles, caveolin-1, might feature critically in the cellular responses to MCP-1. To test this hypothesis, caveolin-1 level was knocked down in human astrocyte cultures by using a small interfering RNA approach. This method resulted in efficient (>90% loss) and specific knockdown of caveolin-1 expression while sparring glial fibrillary acidic protein as well as several other proteins involved in endocytosis. Astrocytes suffering caveolin-1 loss showed diminished ability to down-modulate and internalize the MCP-1 receptor (CCR2) in response to exposure to this chemokine and also demonstrated significantly reduced capacity to undergo chemotaxis and calcium flux when MCP-1-stimulated. The results highlight a potentially prominent role for caveolae and/or caveolin-1 in mediating astrocyte responses to MCP-1, a feature that might significantly dictate the progression of inflammatory events at the blood-brain barrier.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据