4.7 Article

Neohesperidin Dihydrochalcone versus CCl4-Induced Hepatic Injury through Different Mechanisms: The Implication of Free Radical Scavenging and Nrf2 Activation

期刊

JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY
卷 63, 期 22, 页码 5468-5475

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jafc.5b01750

关键词

NHDC; Keap1; HO-1; NQO1; MAPK; liver; ubiquitination

资金

  1. National Natural Science Foundation of China [21477098]
  2. Science and Technology Talent Cultivation Project of Chongqing [cstc2014kjrc-qnrc00001]
  3. Fundamental Research Funds for the Central Universities [XDJK2014A020, XDJK2015A017]

向作者/读者索取更多资源

Neohesperidin dihydrochalcone (NHDC), a sweetener derived from citrus, belongs to the family of bycyclic flavonoids dihydrochalcones. NHDC has been reported to act against CCl4-induced hepatic injury, but its mechanism is still unclear. We first discovered that NHDC showed a strong ability to scavenge free radicals. In addition, NHDC induces the phase II antioxidant enzymes heme oxygenase 1 (HO-1) and NAD(P)H/quinone oxidoreductase 1 (NQO1) through the activation of the nuclear factor (erythroid-derived 2)-like 2 (Nrf2)/antioxidant response element (ARE) signaling. Further assays demonstrated that NHDC induces accumulation of Nrf2 in the nucleus and augmented Nrf2-ARE binding activity. Moreover, NHDC inhibits the ubiquitination of Nrf2 and suggests the modification of Kelch-like ECH-associated protein 1 (Keap1) and the disruption of the Keap1/Nrf2 complex. c-Jun N-terminal kinase (JNK) and p38 but not extracellular signal-regulated protein kinase (ERK) phosphorylations were up-regulated by NHDC treatment. Taken together, NHDC showed its protective antioxidant effect against CCl4-induced oxidative damage via the direct free radical scavenging and indirect Nrf2/ARE signaling pathway.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据