4.8 Article

Atomic transient recorder

期刊

NATURE
卷 427, 期 6977, 页码 817-821

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nature02277

关键词

-

向作者/读者索取更多资源

In Bohr's model of the hydrogen atom, the electron takes about 150 attoseconds (1 as = 10(-18) s) to orbit around the proton, defining the characteristic timescale for dynamics in the electronic shell of atoms. Recording atomic transients in real time requires excitation and probing on this scale. The recent observation of single sub-femtosecond ( 1 fs = 10(-15) s) extreme ultraviolet (XUV) light pulses(1) has stimulated the extension of techniques of femtochemistry(2) into the attosecond regime(3,4). Here we demonstrate the generation and measurement of single 250-attosecond XUV pulses. We use these pulses to excite atoms, which in turn emit electrons. An intense, waveform-controlled, few cycle laser pulse(5) obtains 'tomographic images' of the time-momentum distribution of the ejected electrons. Tomographic images of primary ( photo) electrons yield accurate information of the duration and frequency sweep of the excitation pulse, whereas the same measurements on secondary ( Auger) electrons will provide insight into the relaxation dynamics of the electronic shell following excitation. With the current similar to750-nm laser probe and similar to100-eV excitation, our transient recorder is capable of resolving atomic electron dynamics within the Bohr orbit time.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据