4.6 Article

Crystal structure of human tryptophanyl-tRNA synthetase catalytic fragment - Insights into substrate recognition, tRNA binding, and angiogenesis activity

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 279, 期 9, 页码 8378-8388

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M311284200

关键词

-

资金

  1. NIAID NIH HHS [AI 27690] Funding Source: Medline
  2. NIGMS NIH HHS [GM 66671] Funding Source: Medline

向作者/读者索取更多资源

Human tryptophanyl-tRNA synthetase (hTrpRS) produces a full-length and three N terminus-truncated forms through alternative splicing and proteolysis. The shortest fragment that contains the aminoacylation catalytic fragment (T2-hTrpRS) exhibits the most potent angiostatic activity. We report here the crystal structure of T2-hTrpRS at 2.5 Angstrom resolution, which was solved using the multi-wavelength anomalous diffraction method. T2-hTrpRS shares a very low sequence homology of 22% with Bacillus stearothermophilus TrpRS (bTrpRS); however, their overall structures are strikingly similar. Structural comparison of T2-hTrpRS with bTrpRS reveals substantial structural differences in the substrate-binding pocket and at the entrance to the pocket that play important roles in substrate binding and tRNA binding. T2-hTrpRS has a wide opening to the active site and adopts a compact conformation similar to the closed conformation of bTrpRS. These results suggest that mammalian and bacterial TrpRSs might use different mechanisms to recognize the substrate. Modeling studies indicate that tRNA binds with the dimeric enzyme and interacts primarily with the connective polypeptide 1 of hTrpRS via its acceptor arm and the alpha-helical domain of hTrpRS via its anticodon loop. Our results also suggest that the angiostatic activity is likely located at the alpha-helical domain, which resembles the short chain cytokines.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据