4.4 Article

Effect of phosphate on bacterioferritin-catalysed iron(II) oxidation

期刊

JOURNAL OF BIOLOGICAL INORGANIC CHEMISTRY
卷 9, 期 2, 页码 161-170

出版社

SPRINGER
DOI: 10.1007/s00775-003-0504-1

关键词

bacterioferritins; ferritins; ferroxidase; phosphate; iron core

向作者/读者索取更多资源

The iron(III) mineral cores of bacterioferritins (BFRs), as isolated, contain a significant component of phosphate, with an iron-to-phosphate ratio approaching 1:1 in some cases. In order to better understand the in vivo core-formation process, the effect of phosphate on in vitro core formation in Escherichia coli BFR was investigated. Iron cores reconstituted in the presence of phosphate were found to have iron-to-phosphate ratios similar to those of native cores, and possessed electron paramagnetic resonance properties characteristic of the phosphate-rich core. Phosphate did not affect the stoichiometry of the initial iron(II) oxidation reaction that takes place at the intrasubunit dinuclear iron-binding sites (phase 2 of core formation), but did increase the rate of oxidation. Phosphate had a more significant effect on subsequent core formation (the phase 3 reaction), increasing the rate up to five-fold at pH 6.5 and 25degreesC. The dependence of the phase 3 rate on phosphate was complex, being greatest at low phosphate and gradually decreasing until the point of saturation at similar to2 mM phosphate (for iron(II) concentrations <200 muM). Phosphate caused a significant decrease in the absorption properties of both phase 2 and phase 3 products, and the phosphate dependence of the latter mirrored the observed rate dependence, suggesting that distinct iron(III)-phosphate species are formed at different phosphate concentrations. The effect of phosphate on absorption properties enabled the observation of previously undetected events in the phase 2 to phase 3 transition period.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据