4.6 Article

Evidence of myofibrillar protein oxidation induced by postischemic reperfusion in isolated rat hearts

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpheart.00714.2003

关键词

actin; tropomyosin; oxidative stress; protein carbonylation; free radicals

向作者/读者索取更多资源

Although the contribution of reactive oxygen species to myocardial ischemia is well recognized, the possible intracellular targets, especially at the level of myofibrillar proteins (MP), are not yet fully characterized. To assess the maximal extent of oxidative degradation of proteins, isolated rat hearts were perfused with 1 mM H2O2. Subsequently, the MP maximally oxidative damage was compared with the effects produced by 1) 30 min of no-flow ischemia (I) followed in other hearts by 3 min of reperfusion (I/R); and 2) I/R in the presence of a potent antioxidant N-(2-mercaptopropionyl) glycine (MPG). Samples from the H2O2 group electrophoresed under nonreducing conditions and probed with actin, desmin, or tropomyosin monoclonal antibodies showed high-molecular mass complexes indicative of disulfide cross-bridges along with splitting and thickening of tropomyosin and actin bands, respectively. Only these latter changes could be detected in I/R samples and were prevented by MPG. Carbonyl groups generated by oxidative stress on MP were detected by Western blot analysis (oxyblot) under optimized conditions. The analyses showed one major band corresponding to oxidized actin, the density of which increased 1.2-, 2.8-, and 6.8-fold in I, I/R, and H2O2 groups, respectively. The I/R-induced increase was significantly reduced by MPG. In conclusion, oxidative damage of MP occurs on reperfusion, although at a lower extent than in H2O2 perfused hearts, whereas oxidative modifications could not be detected in ischemic hearts. Furthermore, the inhibition of MP oxidation by MPG might underlie the protective efficacy of antioxidants.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据