4.8 Article

Blockade of CRF1 or V1b receptors reverses stress-induced suppression of neurogenesis in a mouse model of depression

期刊

MOLECULAR PSYCHIATRY
卷 9, 期 3, 页码 278-286

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/sj.mp.4001464

关键词

depression; hippocampus; vasopressin; corticotrophin

向作者/读者索取更多资源

Repeated exposure to stress is known to induce structural remodelling and reduction of neurogenesis in the dentate gyrus. Corticotrophin-releasing factor (CRF) and vasopressin (AVP) are key regulators of the stress response via activation of CRF1 and V-1b receptors, respectively. The blockade of these receptors has been proposed as an innovative approach for the treatment of affective disorders. The present study aimed at determining whether the CRF1 receptor antagonist SSR125543A, the V-1b receptor antagonist SSR149415, and the clinically effective antidepressant fluoxetine may influence newborn cell proliferation and differentiation in the dentate gyrus of mice subjected to the chronic mild stress (CMS) procedure, a model of depression with predictive validity. Repeated administration of SSR125543A (30 mg/kg i.p.), SSR149415 (30 mg/kg i.p.), and fluoxetine (10 mg/kg i.p.) for 28 days, starting 3 weeks after the beginning of the stress procedure, significantly reversed the reduction of cell proliferation produced by CMS, an effect which was paralleled by a marked improvement of the physical state of the coat of stressed mice. Moreover, mice subjected to stress exhibited a 53% reduction of granule cell neurogenesis 30 days after the end of the 7-week stress period, an effect which was prevented by all drug treatments. Collectively, these results point to an important role of CRF and AVP in the regulation of dentate neurogenesis, and suggest that CRF1 and V-1b receptor antagonists may affect plasticity changes in the hippocampal formation, as do clinically effective antidepressants.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据