4.5 Article

Evolutionary dynamics of complex biomechanical systems: An example using the four-bar mechanism

期刊

EVOLUTION
卷 58, 期 3, 页码 495-503

出版社

WILEY-BLACKWELL
DOI: 10.1111/j.0014-3820.2004.tb01673.x

关键词

biomechanics; character evolution; convergence; disparity; four-bar; Labridae; natural selection

向作者/读者索取更多资源

Like many phenotypic traits, biomechanical systems are defined by both an underlying morphology and an emergent functional property. The relationship between these levels may have a profound impact on how selection for functional performance is translated into morphological evolution. In particular, complex mechanical systems are likely to be highly redundant, because many alternative morphologies yield equivalent functions. We suggest that this redundancy weakens the relationship between morphological and functional diversity, and we illustrate this effect using an evolutionary model of the four-bar lever system of labrid fishes. Our results demonstrate that, when traits are complex, the morphological diversity of a clade may only weakly predict its mechanical diversity. Furthermore, parallel or convergent selection on function does not necessarily produce convergence in morphology. Empirical observations suggest that this weak form-function relationship has contributed to the morphological diversity of labrid fishes, as functionally equivalent species may nevertheless possess morphologically distinct jaws. We suggest that partial decoupling of morphology and mechanics due to redundancy is a major factor in morphological diversification.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据