4.3 Article

Shape memory effect and crystallographic investigation in VN containing Fe-Mn-Si-Cr alloys

期刊

MATERIALS TRANSACTIONS
卷 45, 期 3, 页码 930-935

出版社

JAPAN INST METALS
DOI: 10.2320/matertrans.45.930

关键词

shape memory alloy (SMA); martensite; high-resolution electron microscopy; recovery strain

向作者/读者索取更多资源

An industrial application of Fe-based shape memory alloys for joining the pipes in tunnel making constructions requires the proof stress over 400 MPa and 3.5% shape recovery strain. To meet such standards in civil engineering, the Fe-base shape memory alloy containing high-density of coherent VN precipitates has been developed by designing the composition of the Fe-28Mn-6Si-5Cr (mass%) alloy containing 1.5 vol% VN compounds. In order to make clear the mechanism of enhancement of the proof stress and shape recovery strain, crystallographic investigations were carried out using optical microscopy, X-ray diffraction and high-resolution electron microscopy. The {111}-composed octahedral shaped VN precipitates are formed coherently with a cube-to-cube orientation relationship with the matrix, i.e., (001)(P)\\(001)(M) and [100](P)\\[100](M). The precipitates are surrounded by the misfit dislocations at every 8 layers of the (100) planes, which is in agreement with the estimation of the lattice mismatch between the precipitate and the matrix phase. The enhancement of shape recovery is explained by the reversible movement of transformation dislocations left around the precipitates in connection to the residual stress yielded by martensite transformation around the precipitates. It is also suggested that the recovery strain could be proportional to the total number of precipitates.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据